
OntoTrix: A Hybrid Visualization for Populated Ontologies

Benjamin Bach, Emmanuel Pietriga, Ilaria Liccardi Gennady Legostaev
INRIA – LRI (Univ. Paris-Sud & CNRS) St Petersburg State University

Orsay, F-91405, France Saint Petersburg, Russia
{benjamin.bach, emmanuel.pietriga, ilaria.liccardi}@inria.fr glegostaev@gmail.com

ABSTRACT
Most Semantic Web data visualization tools structure the represen-
tation according to the concept definitions and interrelations that
constitute the ontology’s vocabulary. Instances are often treated as
somewhat peripheral information, when considered at all. These in-
stances, that populate ontologies, represent an essential part of any
knowledge base, and are often orders of magnitude more numerous
than the concept definitions that give them machine-processable
meaning. We present a visualization technique designed to enable
users to visualize large instance sets and the relations that connect
them. This hybrid visualization uses both node-link and adjacency
matrix representations of graphs to visualize different parts of the
data depending on their semantic and local structural properties, ex-
ploiting ontological knowledge to drive the graph layout. The rep-
resentation is embedded in an environment that features advanced
interaction techniques for easy navigation, including support for
smooth continuous zooming and coordinated views.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User Interfaces

General Terms
Design, Human Factors

Keywords
Semantic Web, Exploratory Visualization, Graphs, Matrices

1. INTRODUCTION
Significant research and development effort has been dedicated

to the design of visual tools for the Semantic Web [5]. By mak-
ing use of the richer capabilities of graphical representations, as
opposed to textual representations such as RDF/XML or N3, and
by abstracting from the complex syntactic details of the latter and
explicitly representing relations, visual tools aim at providing bet-
ter cognitive support [2] to users, from knowledge engineers to
domain-expert end-users. They provide users with interactive rep-
resentations of the data based upon state-of-the art information vi-
sualization techniques, better supporting tasks such as ontology un-
derstanding, discovery, search, comparison and mapping.

Most tools structure the visualization according to the concept
definitions and interrelations that constitute the ontology’s vocab-
ulary (the TBox in Description Logics). While many of them do

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2011, March 28–April 1, 2011, Hyderabad, India.
ACM 978-1-4503-0637-9/11/03.

support the visualization of instance (ABox) data, instances are of-
ten treated as somewhat peripheral information. The visualization
is mainly structured according to the TBox, instances that consti-
tute the ABox being treated as leaf nodes in this tree or graph struc-
ture. Exceptions to this general observation exist, but either give a
limited view of the ABox or use conventional node-link diagram
representations that do not scale beyond a few hundred nodes.

Instances populate ontologies and represent an essential part of
the overall knowledge base. Understanding instance-level data mi-
ght be easier for users because of their lower level of abstraction
compared to the definition of concepts based on OWL constructs,
but instances will often be orders of magnitude more numerous
than the definitions that give them machine-processable meaning
(see, e.g., many of the datasets currently part of the Linking Open
Data graph). As such, the visualization of instance-level data poses
different but real challenges that remain to be addressed.

We present OntoTrix, a visualization technique designed to en-
able users to visualize, and navigate in, large instance sets and their
relations. The technique is based on a hybrid network visualization
that uses both node-link and adjacency matrix representations (Fig-
ures 1 and 3) to visualize different parts of the data depending on
their semantic and structural properties.

2. ONTOTRIX
Ontology graphs contain many nodes and edges, and are often

non planar. Two main issues with node-link diagram representa-
tions of such graphs are their inefficient use of screen real-estate
and edge crossings that make dense regions difficult to read, both
eventually causing scalability problems. A well-known alternative
to node-link diagrams for graph visualization are adjacency matri-
ces [3]. Nodes are represented as rows and columns, and edges
as filled cells at the intersection of connected rows and columns.
While node-link diagrams are good at showing the structure of rel-
atively small and sparse graphs, adjacency matrices are very effec-
tive at showing large (better use of screen real-estate) and dense (no
edge crossing) graphs. However, adjacency matrix representations
are much less familiar to users than node-link diagrams, and make
tasks that involve following paths in the graph more difficult [3],
significantly increasing the user’s cognitive load.

Our technique is inspired by a hybrid visualization called Node-
Trix originally introduced by Henry et al. [3] and applied to so-
cial networks. The technique is very efficient at visualizing lo-
cally dense but globally sparse networks, representing the overall
structure of the network using a node-link diagram and the dense
subgraphs that represent communities using matrices. While the
graph structure of ontologies might not always share the small-
world characteristics of social networks, we believe that such a
hybrid representation, combined with appropriate interaction tech-

WWW 2011 – Demo March 28–April 1, 2011, Hyderabad, India

177



Figure 1: Region of the NTN ontology corresponding to men and women who live in cities in Judea, and people related to them.

niques, can be an efficient means to perform exploratory visualiza-
tion of large ontology instance sets.

NodeTrix was originally devised for very simple, undirected so-
cial network structures that only feature one type of node (actors)
and one type of relation between actors. In ontologies, instances
belong to different (and possibly multiple) classes, and are con-
nected by different types of object properties. In OntoTrix, we
encode the type of object property – a categorical variable – us-
ing color: different property types are mapped to different color
hues. In the property hierarchy visualization window (Figure 3-D),
property types are laid out hierarchically using a radial tree layout
(see also Figure 2-a). Users can dynamically change the color hue
of a property simply by dragging it, positions on the circle being
mapped to color hues (HSB color model). Edges that connect in-
stances that belong to the same matrix are represented by filling
the corresponding cell in the matrix with the appropriate color. If
several properties connect the same two nodes, the cell is sliced
horizontally, each slice colored with one of the property types.

If the graph is directed, matrices are usually read from row to
column. We follow the same convention in OntoTrix, and further
convey direction by only filling half of the cell to symbolize an
arrow head (Figure 2-b). This also gives us some latitude to repre-
sent additional information such as symmetrical properties (filling
the entire cell) and inverse relationships (filling the other half with
the inverse property’s color). Rows and columns in matrices are re-
ordered using the Reverse Cuthill-McKee algorithm so that clusters
within matrices can better be identified. For edges connecting in-

stances that belong to different matrices (Figure 2-c), we visualize
edge direction by varying from a shade of gray that is lowly con-
trasted with respect to the background color to the highly saturated
color mapped to the object property type [4]. Arrow heads are no
longer required, thus minimizing occlusion and cluttering.

Matrices in NodeTrix basically correspond to highly-connected
groups of actors, i.e., dense subgraphs that represent social com-
munities. In OntoTrix, we propose different methods for grouping
instances into matrices, yielding different perspectives on the data.

Density: This first method is similar to the one used in Node-
Trix: instances are clustered in matrices depending on density, tak-
ing into account all object properties between instance nodes. Clus-
tering by density is driven by the LinLog energy model [8] that will
also be used to compute the initial layout.

Global class membership: This method groups instances into
matrices according to class membership only. The user can specify
what classes in the hierarchy will be used to compute groupings.

Local class membership: This method represents a tradeoff be-
tween the previous two. From an initial grouping based on density,
all nodes are grouped together on a per-matrix basis according to
class membership as described above (performing a reordering of
columns and rows). As a next step, each of the original matrices can
be optionally split into smaller matrices corresponding to the com-
puted class membership groups. As a result of this process, several
matrices corresponding to the same class may be created. Those
can be merged back together in a single matrix. The representa-

WWW 2011 – Demo March 28–April 1, 2011, Hyderabad, India

178



Figure 2: Conveying edge direction: (a) Mapping property type
to color hue for units.owl – Semantic Web for Earth and En-
vironmental Terminology; (b) Matrix: milli_meter derives from
meter, and has prefix milli ; (c) Node-link: lux is a product of
candela and meterSquare, perCandela is derived from unit candela.

tion is then equivalent to the one that would have been obtained by
directly grouping with the Global class membership method.

Property type: This last method clusters resource nodes into
matrices according their object properties. Properties considered
irrelevant can be filtered out: those are still visible, but dimmed so
that selected properties stand out.

To compute the initial representation, matrices are treated as the
nodes of a higher-level aggregate graph. The edges of this graph
are computed according to the object properties connecting ontol-
ogy instance nodes that belong to separate matrices. As mentioned
earlier, LinLog is also used to compute the layout, as it can take
into account the size of nodes in the layout process (matrices can
have very different sizes). After having grouped instances into ma-
trices according to one of the above-described methods, we con-
struct the aggregated graph structure, whose nodes are the matrices
and single nodes that do not belong to a matrix, if any. Node size
depends on the number of elements in the associated matrix, and
edge weight depends on the number of object properties in the ac-
tual ontology graph that link instances in both matrices. OntoTrix
then lays out matrices and single nodes according to the positions
computed by LinLog for this aggregate graph structure, and draws
cubic curves for each object property connecting two instances that
belong to different matrices. These are not the edges of the aggre-
gate graph, which were only used for the layout computation, but
the actual object properties relating instance nodes.

Beyond improvements in terms of readability, we believe that
this hybrid visualization features an interesting property that is re-
lated to the above view of matrices as aggregates of instance nodes
for the layout process. These aggregates will of course depend on
the structure of the ontology and on the grouping method selected.
But often, they will by themselves represent interesting entities, not
explicitly represented in the ontology, but that bear semantics. For
instance, when visualizing a social network such as a co-authorship
network in NodeTrix, matrices are used to represent dense sub-
graphs. These subgraphs will often correspond to research labora-
tories, or to a group of people led by a prominent researcher repre-
senting one particular research direction or theme. Each matrix can
be seen as a single, compound graphical element that graphically
reifies these implicit entities, thus helping users identify them.

The higher level of granularity of these clusters implies an inher-
ently multi-scale representation that can help users identify entities
of interest and smoothly navigate between them according to the
visual information seeking mantra (overview first, zoom and filter,
then details-on-demand [12]). Taking Figure 3 as an example, there

Figure 3: OntoTrix Interface Overview: (A) Main NodeTrix
view, (B) Bird’s eye view, (C) Class hierarchy view, (D), Prop-
erty hierarchy view. Visualizing 724 instances (49 classes) and
1 636 object properties (29 definitions) from the NTN ontology.

seems to be three main large communities in the social network vi-
sualized. While matrices [0] and [3] look fairly similar (cells in both
matrices have similar colors indicating that they contain instances
linked with the same properties), matrix [1] looks different even
from an overview, which could lead the user to investigate one of
the two sets more closely. Similarly, patterns between or within
matrices can often be observed and guide navigation, such as the
single column in matrix [0] in Figure 3 featuring many green cells
(a particular property shared by most instances populating this par-
ticular matrix), or the central actor in Figure 1.

With proper labeling, OntoTrix can also provide some basic form
of semantic zooming. When grouping by class membership in On-
toTrix, matrices obviously represent groups of similar instances.
We thus label each matrix with the associated class name (Fig-
ure 1). When grouping by other methods, matrices cannot easily
be tagged as there is no explicit information about the grouping,
that stems from the purely structural clustering of the graph. Ma-
trices might still represent interesting entities, but will have to be
labeled manually and are currently assigned a random identifier.

3. TASK AND COGNITIVE SUPPORT
The OntoTrix environment features four main views presented

in Figure 3. The main view (A), contains the OntoTrix representa-
tion of the instance set. (B) provides an interactive bird’s eye view
of (A). The class hierarchy is visualized in (C) as a node-link dia-
gram. The property hierarchy in (D) uses a radial tree layout. All
views are implemented with the ZVTM user interface toolkit [10]
and support smooth continuous zooming. Most visual transitions
are smoothly animated to lower the user’s cognitive load when re-
lating the two states. This includes transitions when switching be-
tween different grouping methods, e.g., from density to local class
membership. This particular transition is currently limited to fad-
ing in/out the new/old matrices while trying to preserve their spa-
tial position. More elaborate transitions using elaborate morphing
techniques [3] are being investigated.

WWW 2011 – Demo March 28–April 1, 2011, Hyderabad, India

179



Ontology Class Object Property Data Property Instances Object Total number of Graphical Parsing Total
definitions definitions definitions properties statements (TBox+ABox) objects time time

Units1 13 3 5 103 146 438 1715 1.6s 2.7s

Wine2 138 16 1 206 246 4 547 3 296 5.5s 7.5s

NTN3 49 29 9 724 1 636 4 702 17 946 3.6s 10.9s

SC4 29 8 5 3 053 10 105 23 665 67 480 4.8s 73.5s

Tests performed with default OWL transitive reasoner, on a 2.26GHz Quad-Core Mac Pro (OS X 10.6.4). Java 1.6 set with a start and max memory heap sizes of 512MB resp. 2GB.
1
http://sweet.jpl.nasa.gov/1.1/units.owl

3
http://www.semanticbible.com/ntn/ntn-view.html

2
http://www.w3.org/TR/2003/CR-owl-guide-20030818/wine

4
http://www.mindswap.org/ontologies/SC.owl

Table 1: Performance

Numerous interactive features are built in the Ontotrix environ-
ment to help users visualize large sets of instances. As OntoTrix
is currently limited to visualization and does not support in-place
editing, most supporting features are related to navigation for un-
derstanding, discovery and search [2]. We present these features
using relevant items from the categorization of tasks by Katifori et
al. based on earlier work by Shneiderman [5] and echoed in the
principles enunciated in [1].

Overview: Users are presented with an overview of the entire
data in all views when a new ontology is loaded. As discussed
earlier, matrices can be seen as coherent aggregations of instances
which, together with proper labeling, provide a multi-scale and
overview-compatible representation of the ontology [2].

Zoom: All views being implemented with a ZUI toolkit [10],
users can smoothly pan and zoom-in on items of interest. Global
context is retained thanks to the bird’s eye view (Figure 3-B). Ob-
jects have a specific location in space, thus ensuring better spa-
tial knowledge preservation (as opposed to, e.g., expanding trees or
node-link diagrams laid out using spring-based algorithms).

Filter: Properties can be selected and unselected in the object
property hierarchy (Figure 3-D). Properties can thus be removed
by type. When grouping matrices by property type, properties not
selected are still visible but rendered with a lowly-contrasted color.

Details-on-demand: Data properties associated with nodes pop-
up on demand when clicking inside a node, enabling comparisons
between nodes, something difficult with non-persistent details-on-
demand techniques such as tooltips, that require memorizing the
previous value(s). At any given zoom level, a region of the view
can be magnified (up to 14x) using a Sigma Lens [11] providing
a focus+context view (right-hand side of Figure 1). Additional
techniques inspired by work on topology aware navigation in large
networks [7] are currently being implemented to further facilitate
navigation. For instance, when zoomed-in on a large matrix, node
labels might not be visible inside the viewport. Hitting a shortcut
key temporarily brings row and column labels inside the viewport
(Bring & Go). We are also implementing the Link sliding technique
that will facilitate “jumping between [related] concepts[/instances]”
[2] located in different matrices.

Relate: All views are coordinated. For instance, hovering a node
in the class hierarchy view highlights all corresponding instances
in the OntoTrix view. Hovering a node in the property hierarchy
view highlights all corresponding rows and columns in matrices, as
well as corresponding edges between matrices. Classes declared
as being in the domain or range of the property are highlighted in
the class hierarchy, and conversely. Changes to the color hue of a
property type in the property hierarchy view get dynamically prop-
agated to the OntoTrix view. Hovering an instance in the OntoTrix
view highlights all nodes from owl:Thing down to the actual class the
instance is a member of, and highlights all properties in the prop-
erty hierarchy that are used to relate that instance to other instances.

Search: Specific instances can be searched for; the main view
smoothly pans and zooms to each matching instance sequentially.

4. IMPLEMENTATION
Rather than a full-featured ontology development environment,

we consider OntoTrix as a new visualization technique that com-
plements existing solutions, and could be integrated into applica-
tions such as Protégé [6]. OntoTrix is implemented in Java. The
user interface is based on the ZVTM user interface toolkit [10].
LinLogLayout [8] is used for layout and clustering (grouping by
density), Jena 2 for loading ontologies, and the TDB backend for
storing them. The built-in OWL transitive reasoner is enabled by
default, providing a complete classification of the ontology, i.e.,
calculating the complete class and property hierarchies. Additional
reasoning can be performed before storing and visualization using
one of the Jena reasoners or an external reasoner such as Pellet [9].
To evaluate the performance of OntoTrix, we performed tests with
a set of ontologies ranging from a few hundred to several thousand
instances and relations. Results are reported in Table 1, and show
that loading times start to degrade when we try to visualize several
tens of thousands of statements. While larger ontologies exist, they
cannot be effectively visualized in their entirety with OntoTrix or
any other tool we are aware of.

5. REFERENCES
[1] T. d’Entremont and M.-A. Storey. Using a degree of interest model

to facilitate ontology navigation. In Proc. VL/HCC ’09, pages 127
–131. IEEE, 2009.

[2] N.-A. Ernst, M.-A. Storey, and P. Allen. Cognitive support for
ontology modeling. IJHCS, 62(5):553–577, 2005.

[3] N. Henry, J.-D. Fekete, and M. J. McGuffin. Nodetrix: a hybrid
visualization of social networks. IEEE TVCG, 13(6):1302–1309,
2007.

[4] D. Holten and J. J. van Wijk. A user study on visualizing directed
edges in graphs. In Proc. CHI ’09, pages 2299–2308. ACM, 2009.

[5] A. Katifori, C. Halatsis, G. Lepouras, C. Vassilakis, and
E. Giannopoulou. Ontology visualization methods—a survey. ACM
CSUR, 39(4):10:1–10:42, 2007.

[6] H. Knublauch, R. Fergerson, N. Noy, and M. Musen. The Protégé
OWL Plugin: An Open Development Environment for Semantic
Web Applications. In Proc. ISWC 2004, pages 229–243. Springer,
2004.

[7] T. Moscovich, F. Chevalier, N. Henry, E. Pietriga, and J.-D. Fekete.
Topology-aware navigation in large networks. In Proc. CHI ’09,
pages 2319–2328. ACM, 2009.

[8] A. Noack. Energy-based clustering of graphs with nonuniform
degrees. In Proc. Graph Drawing, pages 309–320. Springer-Verlag,
2005.

[9] B. Parsia and E. Sirin. Pellet: An OWL DL Reasoner. In Proc.
Description Logics Workshop, 2004.

[10] E. Pietriga. A toolkit for addressing hci issues in visual language
environments. In Proc. VL/HCC ’05, pages 145–152. IEEE, 2005.

[11] E. Pietriga, O. Bau, and C. Appert. Representation-independent
in-place magnification with sigma lenses. IEEE TVCG,
16(03):455–467, 2009.

[12] B. Shneiderman. The eyes have it: A task by data type taxonomy for
information visualizations. In Proc. VL ’96, pages 336–343. IEEE,
1996.

WWW 2011 – Demo March 28–April 1, 2011, Hyderabad, India

180


